
We provide comprehensive supplementary materials for better understanding of our paper and show
more evidence to support our idea. The appendices are organized as follows: Sec. A first provides
some discussions for certain points. Then we further provide detailed experiment settings, results,
analysis and visualizations in Sec. B. Finally, we show details for STL-C and ConceptFactory asset
in Sec. C.

A Discussions

A.1 Purpose behind ConceptFactory

In this paper, we present the idea of ConceptFactory to facilitate more efficient annotation of 3D object
knowledge by recognizing 3D objects through generalized concepts. We would like to emphasize that
our purpose mainly focuses on providing an advanced practice in annotation collection. Although
we also provide ConceptFactory asset which is a large collection of conceptualized data, the asset is
not designed as a dataset for a specific task. The main purpose of ConceptFactory asset is sharing
the fine-grained conceptualization results for a large scale of objects across diverse categories with
the community, which can enable the community to avoid certain human efforts involved in object
conceptualization and then help researchers easily acquire a large amount of well-annotated data to
meet their research needs in specific applications by customizing their own knowledge according to
the procedural knowledge annotation scheme.

A.2 Human-made v.s. natural objects

In this paper, we develop ConceptFactory and validate its effectiveness mainly on human-made
objects in indoor scenes, which i) frequently come into contact with us in daily life and are associated
with many important applications including perception [1, 2, 3, 4] and manipulation [5, 6, 7], ii) have
abundant publicly available 3D models in existing datasets [7, 8, 9], and iii) have been annotated
with different types of knowledge according to conventional annotation schemes, which makes it
convenient to compare with annotations provided by our scheme. As general concepts are implicit
in the fabrication process for human-made objects, the idea of ConceptFactory can adapt well to
these object. Contrary to human-made objects, natural objects such as flowers and trees are widely
studied in 2D tasks but rarely in 3D tasks. We assume the reasons are that i) the data (e.g. scans) of
such objects are very difficult to acquire and ii) these objects do not involve in many manipulation
tasks, which narrow the applications of these objects. Therefore, there are few 3D models for natural
objects in existing publicly available repositories, and currently we do not take the natural objects
into consideration when developing ConceptFactory. However, we believe it is possible for the idea
of ConceptFactory to cover these objects as they still follow certain regular geometric patterns [10].
We will continue to work on extending ConceptFactory to natural objects to make our idea stronger.

A.3 Limitations and societal impacts

As mentioned in Sec. A.2, ConceptFactory is currently developed on human-made objects and does
not include natural objects. As a future work, we will extend STL-C with more concept templates
to cover natural objects, and expand ConceptFactory assets with natural objects by collecting 3D
models for such objects and then conceptualizing them.

We hope ConceptFactory can promote machine intelligence to learn comprehensive object knowledge
from both vision and robotics aspects, through which we will be brought one step closer to empow-
ering intelligent agents to understand the physical world and therefore improves the life quality for
people. However, as the amount of knowledge that machine intelligence needs to learn increases, the
consumption of training neural networks will increase accordingly and therefore induce additional
economic and energy costs.

A.4 Compute resources, Licenses and hourly wage for volunteers

For compute resources, our experiments are conducted on a single RTX3090 GPU and Intel(R)
Xeon(R) Gold 6133 CPU @ 2.50GHz CPU. The data that used in this study are all publicly available,
and are used under their licenses for the current study. There are no personally identifiable information
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or offensive content in these data. The hourly wage of volunteers for object conceptualization is
about 10 dollars.

B Experiments

B.1 Detailed experiment settings

B.1.1 Vision Task Settings

Semantic Segmentation. We introduce Point-Transformer [2] and PointNet++ [11] as baselines
for semantic segmentation. Point-Transformer proposed a highly expressive neural network design
invariant to permutation and cardinality. PointNet++ is an popular and efficient network which servers
as the backbone of many 3D frameworks.

In Tab. 1, we give the detailed statistics of certain data in ConceptFactory asset used for this task. The
original labels of the objects are acquired by conventional annotation schemes [12, 13, 14]. We obtain
our annotations for an object by first assigning each geometry component in a concept template its
semantic label, and then propagating such labels to the object’s point cloud as mentioned in Sec. 3.4
of the main paper. We uniformly sample 2048 points as the input.

Mean accuracy (mAcc) and mean IoU (mIoU) are adopted as evaluation metrics following the
baselines.

Bot Box Bkt Chr Dsw Dsp Dpl Dor Egl Glb Ket Ktp Ltp Lgt Mcw
Train 217 18 22 425 30 33 193 22 42 25 18 17 33 18 11
Test 94 8 10 183 14 15 83 10 19 12 8 8 15 9 5
Total 311 26 32 608 44 48 276 32 61 37 26 25 48 27 16

Mug Pen Plr Rfg Saf Scs Stp Stf Swt Tab Tcn USB Wsm Win TTL
Train 83 20 12 14 18 29 15 106 35 37 37 30 11 35 1606
Test 36 9 6 7 8 13 7 46 15 17 17 14 6 16 710
Total 119 29 18 21 26 42 22 152 50 54 54 44 17 51 2316

Table 1: Detailed statistics of data used for semantic segmentation task.

Cross Category Segmentation. We adopt GAPartNet [4] as baseline for cross category segmenta-
tion. GAPartNet introduced a large-scale part-centric interactive dataset with part-level annotations
including poses and cross category semantics, and proposed a robust 3D segmentation method from
the perspective of domain generalization by integrating adversarial learning techniques.

The original GAPartNet cross category semantic annotations are obtained by human experts through
laboriously data cleaning and manually annotating. In contrast, we can describe fine-grained cross
category semantics effortlessly by shared geometric components in concept templates among different
categories, and assign cross category semantic labels on our concept template. We then propagate the
cross category labels to corresponding point on objects and sample 20000 points with farthest-point-
sampling technique as the input.

The detailed statistics of data in ConceptFactory asset used for cross category segmentation is shown
in Tab. 2. We follow GAPartNet for data and categories as long as they are available in ConceptFactory
asset.

We use widely adopted AP (average precision) as metric for each detectable part. We also report the
AP averaged over IoU thresholds from 50% to 95% with a step of 5% for comprehensive evaluation.

Part Pose Estimation. Since GAPartNet [4] also provides a delicately designed part pose estimation
mechanism, we still adopt GAPartNet as baseline here. The statistics of data used for part pose
estimation is the same to cross category segmentation task, as is shown in Tab. 2.

Similar to the acquisition of the original cross category semantic annotation, the original part pose
annotations in GAPartNet are acquired with human labor to clean data and subsequently aligning and
annotating part poses. As comparison, our part pose annotations are acquired in the following way.
Through object conceptualization, we have obtained the concept template instances for each part of
an object. Each template instance has its intrinsic reference coordinate system (e.g. the edge of a
cuboid should be along with x, y, z axis in its reference coordinate system). We can define the pose
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of each detectable part of the object as the transformation from the concept’s reference coordinate
system to the global coordinate system.

We report metrics including rotation error (Re), translation error (Te), scale error (Se), 3D mIoU,
(5◦, 5cm) accuracy (A5) and (10◦, 10cm) accuracy (A10) following GAPartNet.

Seen Cat Bkt Box Dor Kpt Mcw Rfg Saf Stf Tcn Wsm TTL
Train 25 20 7 10 13 28 14 117 26 14 274
Test 6 5 7 10 3 29 15 29 26 3 133
Total 31 25 14 20 16 57 29 146 52 17 407

Unseen Cat Dsw Lpt Tab TTL
Test/Total 8 48 77 133

Table 2: Detailed statistics of data used for GAPartNet related tasks: cross category segmentation,
part pose estimation and manipulation tasks with GAPartNet as baseline.

B.1.2 Manipulation Task Settings

We adopt Where2Act [5], Where2Explore [6], as well as the aforementioned GAPartNet [4] as
baselines for manipulation task.

Where2Act & Where2Explore. Where2Act proposed a learning-from-interaction framework with
an online data sampling strategy that enables training in simulation and generalizing across categories.
Where2Explore further proposed an affordance learning framework that effectively explores novel
categories with minimal interactions on instances, transferring affordance knowledge to similar parts
of objects across different categories.

The affordance labels of Where2Act and Where2Explore are not provided along with articulated
objects. Instead, affordance labels of an object are explored through pixel-wise interaction with the
object in a simulated environment. This approach may result in inaccurate and noisy labels due to
random sampling and imperfections of the simulator. In comparison, we acquire the affordance labels
by first determining the affordable region within the concept template and subsequently propagating
this affordance to the object’s point cloud as mentioned in Sec. 3.4 of the main paper. We use
farthest-point-sampling technique to sample 10000 points for training and evaluation following the
setting of baselines.

As shown in Tab. 3, totally 15 representative categories of objects from PartNet-Mobility [14] are
used in experiments following the baselines, after removing categories that are typically too small
(e.g. Pen, USB) or do not make sense for a single-gripper to manipulate (e.g. Bottle, Scissors). A
full list of the specific manipulation tasks for Where2Act and Where2Explore are provided in Tab. 4,
which can be categorized into two general action types: pushing and pulling.

Train Cats Box Dor Fct Ket Mcw Rfg Stf Swt Tcn Win TTL
Train 20 23 65 22 9 32 113 53 52 40 429
Test 8 12 19 7 3 11 36 17 17 18 148
Total 28 35 84 29 12 43 149 70 69 58 577

Test Cats Bkt Kpt Saf Tab Wsm TTL
Test/Total 36 23 29 95 16 199

Table 3: Detailed statistics of data used for manipulation tasks with Where2Act and Where2Explore
as baselines.

GAPartNet. GAPartNet determines the interaction target and trajectory according to the knowledge
of generalizable and actionable parts in objects, namely GAParts.

Here we follow the implementation of data preparation as aforementioned in Sec. B.1.1 since the
network and training data for detecting GAParts in manipulation task is the same as cross category
segmentation and part pose estimation. The list of specific tasks for manipulation using GAPartNet is
provided in Tab. 5.
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Category Tasks
Box Push/Pull Lid

Bucket Push/Pull Handle
Door Push Door; Push/Pull Door via Handle

Faucet Push/Pull Switch
Kettle Push/Pull Handle

KitchenPot Push/Pull Handle; Pull Lid
Microwave Push Door; Push/Pull Door via Handle

Refridgerator Push Door; Push/Pull Door via Handle
Safe Push Door; Push/Pull Door via Handle

StorageFurniture Push Door; Push/Pull Door via Handle; Push/Pull Drawer via Handle
Switch Push/Pull Switch
Table Push Closet; Push/Pull Closet via Handle

TrashCan Push/Pull Lid
WashingMachine Push Door; Push/Pull Door via Handle; Push Lid

Window Push Window; Push/Pull Window via Handle

Table 4: List of specific manipulations tasks with Where2Act and Where2Explore as baselines. The
tasks can be generally categorized into pushing and pulling.

Category Tasks
Box Rotate Hinge Lid

Bucket Rotate Hinge Handle
DishWasher Close Hinge Door; Open/Close Door via Line Fixed Handle

Door Close Hinge Door; Open/Close Door via Line/Round Fixed Handle
Kettle Rotate Hinge Handle

KitchenPot Move Lid via Line Fixed Handle/Round Fixed Handle
Laptop Rotate Hinge Lid

Microwave Close Hinge Door; Open/Close Hinge Door via Line Fixed Handle
Refrigerator Close Hinge Door; Open/Close Hinge Door via Line Fixed Handle

Safe Close Hinge Door; Open/Close Hinge Door via Hinge Knob

StorageFurniture Close Hinge Door; Open/Close Hinge Door via Line/Round Fixed Handle;
Close Slider Drawer; Open/Close Slider Drawer via Line/Round Fixed Handle

Table Close Hinge Door; Open/Close Hinge Door via Line/Round Fixed Handle;
Close Slider Drawer; Open/Close Slider Drawer via Line/Round Fixed Handle

TrashCan Rotate Hinge Lid; Rotate Hinge Lid via Line Fixed Handle
WashingMachine Close Hinge Door;

Table 5: List of specific manipulations tasks with GAPartNet. The tasks are defined based on GAParts.

Environment & Metric. We adopt SAPIEN simulator [14] as the interaction environment for
manipulation tasks and corresponding environment settings following the baselines. For each round
of interaction simulation, we initially place an object in SAPIEN simulator at the center of the scene.
The joint state of the object has a 50% chance of being closed (e.g. a closed door) and another 50%
chance of being open at a random extent (e.g. a half open drawer). The whole scene is observed
through an RGB-D camera with known intrinsic parameters. The camera stares at the center of the
object and is located at the upper hemisphere with random azimuth [0◦,360◦) and random altitude
[30◦,60◦]. A Franka Panda flying gripper with 2 fingers is used to interact with the object. For
pushing tasks, a closed gripper is initially placed 0.05m away from the target along the movement
direction, then moves forward for a longer distance in order to push the target. For pulling tasks, an
open gripper is placed 0.05m away from the the target along the movement direction, then moves
towards the target for 0.045m and closes itself to grasp the target. The gripper subsequently moves
back to the start point to pull the target.

Success rate is used as the evaluation metric. Following the baselines, we consider an interaction
with a certain part successful if either of the following condition is hold: 1) absolute motion of the
part is greater than 0.01. 2) motion of the part is greater than half of its maximum motion range.
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B.2 Detailed experiment results

Vision Task Results. We provide detailed semantic segmentation results for each object category
in Tab. 6. Since cross category segmentation and part pose estimation in GAPartNet are not object
category level tasks, we provide results per part in Tab. 7 for cross category segmentation and detailed
6-dof pose related errors in Tab. 8 for part pose estimation. For all tasks, the results show only minor
discrepancies between baselines and our approach. This indicates that annotations provided by our
scheme possess high quality on par with original ones. We attribute a slight performance decline
in some cases to the cognitive variance between our annotators for object conceptualization and
the annotators involved in obtaining the original annotations, as we use the original annotations as
ground truth to evaluate the performance of both models. For certain performance improvements,
we consider the fact that our mathematically grounded annotations can offer better consistency and
lower noise, which supervise networks for better convergence.

PointTransformer mAcc(%) ↑
Bot Box Bkt Chr Dsw Dsp Dpl Dor Egl Glb Ket Ktp Ltp Lgt Mcw

Original 97.3 93.3 96.7 94.0 89.9 93.4 95.7 75.8 96.7 95.4 92.3 95.0 94.3 84.4 78.8
ConFac 96.4 92.1 96.7 92.0 89.7 94.2 95.2 76.1 95.6 95.7 92.5 94.1 95.1 86.0 80.4

∆ -0.9 -1.2 0.0 -2.0 -0.2 0.8 -0.5 0.3 -1.1 0.3 0.2 -0.9 0.8 1.6 1.6
Mug Pen Plr Rfg Saf Scs Stp Stf Swt Tab Tcn USB Wsm Win AVG

Original 93.4 91.0 83.4 88.7 92.1 91.5 79.5 92.8 90.6 87.1 92.1 79.3 90.0 84.6 90.0
ConFac 94.4 90.4 81.5 89.8 93.0 91.5 79.9 91.0 89.4 87.7 92.7 77.8 89.0 84.3 89.8

∆ 1.0 -0.6 -1.9 1.1 0.9 0.0 0.4 -1.8 -1.2 0.6 0.6 -1.5 -1.0 -0.3 -0.2
PointTransformer mIoU(%) ↑

Bot Box Bkt Chr Dsw Dsp Dpl Dor Egl Glb Ket Ktp Ltp Lgt Mcw
Original 71.4 76.8 49.9 88.8 94.5 80.2 77.2 26.9 98.1 75.2 83.9 73.2 87.8 47.7 59.2
ConFac 71.1 75.0 49.5 87.6 93.9 82.0 76.3 28.9 97.2 77.2 84.0 72.3 89.7 49.5 62.3

∆ -0.3 -1.8 -0.4 -1.2 -0.6 1.8 -0.9 2.0 -0.9 2.0 0.1 -0.9 1.9 1.8 3.1
Mug Pen Plr Rfg Saf Scs Stp Stf Swt Tab Tcn USB Wsm Win AVG

Original 98.3 78.1 72.9 92.6 65.0 95.9 69.6 92.3 69.6 71.8 75.7 79.6 52.2 82.6 75.4
ConFac 98.2 77.4 71.5 94.5 65.7 95.7 71.3 91.5 68.3 73.5 77.1 78.6 50.6 81.5 75.6

∆ -0.1 -0.7 -1.4 1.9 0.7 -0.2 1.7 -0.8 -1.3 1.7 1.4 -1.0 -1.6 -1.1 0.2
Pointnet++ mAcc(%) ↑

Bot Box Bkt Chr Dsw Dsp Dpl Dor Egl Glb Ket Ktp Ltp Lgt Mcw
Original 95.9 94.9 96.9 94.0 90.1 94.2 96.0 72.5 95.0 92.4 83.0 92.2 95.0 84.4 85.0
Confac 95.3 95.7 96.8 92.5 89.7 94.6 95.6 73.0 94.2 92.7 84.3 91.6 95.0 84.4 85.9

∆ -0.6 0.8 -0.1 -1.5 -0.4 0.4 -0.4 0.5 -0.8 0.3 1.3 -0.6 0.0 0.0 0.9
Mug Pen Plr Rfg Saf Scs Stp Stf Swt Tab Tcn USB Wsm Win AVG

Original 93.2 87.9 84.2 90.8 86.3 91.0 78.9 88.8 89.0 81.4 92.5 79.3 92.0 79.6 88.8
ConFac 92.9 87.5 82.3 90.9 88.2 91.2 80.0 88.2 88.4 83.0 92.7 77.7 92.5 78.5 88.8

∆ -0.3 -0.4 -1.9 0.1 1.9 0.2 1.1 -0.6 -0.6 1.6 0.2 -1.6 0.5 -1.1 0.0
Pointnet++ mIoU(%) ↑

Bot Box Bkt Chr Dsw Dsp Dpl Dor Egl Glb Ket Ktp Ltp Lgt Mcw
Original 71.3 87.0 48.4 89.5 81.0 76.0 75.3 39.1 88.4 82.3 46.2 82.1 70.2 52.6 60.6
ConFac 70.2 88.5 48.4 88.1 80.4 76.4 74.7 37.6 87.7 82.3 47.8 81.2 70.0 52.4 61.0

∆ -1.1 1.5 0.0 -1.4 -0.6 0.4 -0.6 -1.5 -0.7 0.0 1.6 -0.9 -0.2 -0.2 0.4
Mug Pen Plr Rfg Saf Scs Stp Stf Swt Tab Tcn USB Wsm Win AVG

Original 89.0 67.9 74.1 63.9 53.8 58.1 59.1 75.3 46.1 67.7 65.2 71.7 42.5 65.7 67.2
ConFac 88.9 67.7 74.0 64.0 54.9 60.0 59.6 75.0 45.5 69.2 67.2 70.9 44.3 64.2 67.3

∆ -0.1 -0.2 -0.1 0.1 1.1 1.9 0.5 -0.3 -0.6 1.5 2.0 -0.8 1.8 -1.5 0.1

Table 6: Experiment results of semantic segmentation in detail. ∆ denotes the gap of between two
baseline models separately trained with the original or our annotations in absolute value.

Ln.F.HD Rd.F.HD Hg.Ld Sd.Ld Sd.Dw Hg.Dr Avg AP Avg AP50
Original 69.4 36.0 39.0 68.2 51.2 84.5 30.0 37.7
ConFac 69.6 36.4 39.0 68.7 51.9 84.9 30.6 38.5

∆ 0.2 0.4 0.0 0.5 0.7 0.4 0.6 0.8

Table 7: Experiment results of cross category segmentation in detail. ∆ denotes the gap of between
two baseline models separately trained with the original or our annotations in absolute average
precision.

Manipulation Task Results. We provide manipulation results with metric sample success rate (ssr)
for each object category in detail in Tab. 9 and Tab. 10. The results of Where2Act and Where2Explore
highlight considerable improvements by training with our affordance annotations, demonstrating the
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Re(◦) ↓ Te(cm)↓ Se(cm)↓ mIoU(%) ↑ A5(%) ↑ A10(%) ↑
Original 9.62 0.024 0.066 42.6 29.1 55.7
ConFac 9.59 0.022 0.063 42.8 30.3 56.9

∆ 0.03 0.002 0.003 0.2 1.2 1.2

Table 8: Experiment results of part pose estimation in detail. ∆ denotes the gap of between two
baseline models separately trained with the original or our annotations in absolute value.

strong ability of our approach to provide accurate, consistent and clean affordance knowledge among
various object categories.

Where2Act ssr(%) ↑
Box Bkt Dor Fct Ket Ktp Mcw Rfg Saf Stf Swt Tab Tcn Wsm Win AVG

push
Original 10.6 18.1 17.9 33.3 27.2 17.1 18.3 16.0 25.3 26.0 12.5 31.2 11.9 13.0 28.1 23.7
ConFac 15.2 17.3 23.4 36.8 28.1 18.8 21.9 20.0 31.5 32.9 11.5 44.0 14.5 16.4 37.5 30.0

∆ 4.6 -0.8 5.5 3.5 0.9 1.7 3.6 4.0 6.2 6.9 -1.0 12.8 2.6 3.4 9.4 6.3

pull
Original 7.1 4.2 11.1 14.7 8.0 7.2 3.3 2.4 5.3 10.4 3.6 12.3 8.0 4.0 1.2 8.4
ConFac 8.3 5.2 16.4 16.2 10.1 7.3 4.2 1.7 6.7 13.5 3.3 16.1 8.6 6.7 1.0 10.6

∆ 1.2 1.0 5.3 1.5 2.1 0.1 0.9 -0.7 1.4 3.1 -0.3 3.8 0.6 2.7 -0.2 2.2
Where2Explore ssr(%) ↑

Box Bkt Dor Fct Ket Ktp Mcw Rfg Saf Stf Swt Tab Tcn Wsm Win AVG

push
Original 16.5 26.4 35.2 23.4 16.5 25.3 51.1 27.7 30.5 51.1 11.0 41.6 21.0 8.3 15.2 33.0
ConFac 21.2 29.3 39.1 22.5 17.5 25.3 50.9 29.9 36.4 59.7 10.3 48.1 22.2 10.4 18.0 37.4

∆ 4.7 2.9 3.9 -0.9 1.0 0.0 -0.2 2.2 5.9 8.6 -0.7 6.5 1.2 2.1 2.8 4.4

pull
Original 16.5 17.1 11.7 16.2 17.4 14.3 11.8 9.6 9.0 13.6 2.2 25.6 19.7 7.2 1.5 15.6
ConFac 18.4 18.4 15.1 15.3 20.4 18.8 12.6 8.8 10.0 19.7 2.0 28.6 26.1 10.0 1.4 18.5

∆ 1.9 1.3 3.4 -0.9 3.0 4.5 0.8 -0.8 1.0 6.1 -0.2 3.0 6.4 2.8 -0.1 2.9

Table 9: Experimental results on manipulation tasks with Where2act and Where2Explore in detail. ∆
denotes the gap of between two baseline models separately trained with the original or our annotations
in absolute ssr.

Box Bkt Dor Dsw Ktp Ltp Mcw Rfg Saf Stf Tab Tcn Wsm AVG
Original 21.7 33.8 27.9 27.1 25.1 15.1 32.4 29.5 29.9 28.2 16.0 30.9 40.0 24.8
ConFac 25.1 36.8 27.0 27.1 25.9 17.2 34.0 30.0 29.2 29.1 15.0 30.8 39.4 25.1

∆ 3.4 3.0 -0.9 0.0 0.8 2.1 1.6 0.5 -0.7 0.9 -1.0 -0.1 -0.6 0.3

Table 10: Experimental results on manipulation tasks with GAPartNet in detail. We do not distinguish
pushing and pulling here following the settings of GAPartNet. ∆ denotes the gap of between two
baseline models separately trained with the original or our annotations in absolute ssr.

Error bars We provide error bars for our experiments in the main context in Tab. 11 and Tab. 12.

Semantic Segmentation Cross Category
Segmentation Part Pose Estimation

PointTransformer PointNet++ GAPartNet
mAcc mIoU mAcc mIoU mAP mAP50 mIoU A5 A10

Original ±0.11 ±0.10 ±0.08 ±0.05 ±0.04 ±0.08 ±0.04 ±0.05 ±0.06
ConFac ±0.08 ±0.12 ±0.08 ±0.06 ±0.03 ±0.10 ±0.07 ±0.05 ±0.05

Table 11: Error bar of experiments results of semantic segmentation, cross category segmentation
and part pose estimation.

Where2Act Where2Explore GAPartNet
Original ±0.42 / ±0.50 ±0.36 / ±0.45 ±0.42
ConFac ±0.36 / ±0.42 ±0.33 / ±0.38 ±0.39

Table 12: Error bar of experimental results of manipulation tasks.

B.3 Annotation visualizations of different knowledge types across different object categories

We provide annotation visualizations of different knowledge types across different object categories
in Fig. 1 and Fig. 2, where each annotation pair consist of original annotation (Left) and annotation
obtained by our approach (Right). The annotations are divided into three piles according to their
types: semantic segmentation, part pose and affordance.
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Semantic Segmentation. We use different colors to distinguish the semantic regions according
to the annotations. We can observe that our approach is able to provide annotation that is almost
identical to the original one in most cases. For those annotations with certain gaps such as chairs in
Row 2, Col 1-2, the original annotations confuse with the definition of crossbars between legs while
our approach reasonably and consistently label these regions to part of legs.

Part Pose. We use oriented bounding boxes drawn in red lines to represent the pose of each part.
The annotation pairs show that our approach is able to assign proper poses to each part.

Affordance. Here red regions represent the affordance of different object categories. The con-
ventional method [5] to obtain affordance is based on pixel-level interactions with an object within
a simulated environment. However, the randomness of sampling and the imperfections inherent
in the simulator can result in affordance labels that are filled with noise. Compared with original
annotations, our approach provides more consistent affordance labels with much less noise. This
facilitates baseline models in better learning object affordance knowledge and thereby achieving
stronger manipulation capabilities.

B.4 Human evaluation

We further provide a human evaluation to compare the quality of the original and our annotations.
We invite five volunteers, show pairs of annotations to them, and ask them to evaluate which is better
in each pair. The number of pairs of semantic segmentation, part pose and affordance annotations are
500, 200, and 200 respectively. The results are provided in Tab. 13. For semantic segmentation and
part pose, the annotation quality is comparable between the original ones and ours. For affordance
knowledge, the annotations acquired by our approach greatly surpass the quality of the original ones.
Therefore, we regard this capability of providing affordance knowledge as the major indication of the
advantages of our annotation scheme.

Equally Better Ours Better Original Better
Semantic Segmentation 73.6% 13.4% 13.0%

Part Pose 91.3% 4.8% 3.9%
Affordance 23.3% 75.0% 1.7%

Table 13: Human evaluation of the annotation quality.

B.5 User Studies for Conceptualization Platform

In order to consistently improve the user experience of our conceptualization platform, we have
invited a total of 23 volunteers as test users and conducted two rounds of overall improvements on
our platform. Specifically, during each round of improvement, we ask the test users to conceptualize
sample objects across all available categories using the platform, and provide feedback such as
difficulties during usage, bug reports, as well as suggestions. We then collect the feedback and use it
for improving our platform. To verify the effectiveness of our improvements, we additionally invite
the test users to fill out System Usability Scales [15] and calculate the average SUS score before and
after each round of improvement. An illustration of our specific changes on the platform as well as
the SUS scores are shown in Fig.3.

C STL-C and ConceptFactory asset

Tab. 14 is the cross reference table explaining the notations in Tab. 1 of the main paper. In Fig. 4-16,
we show for all the 39 object categories that i) how an object category is divided into a group of parts
according to their structural for better guidance in the conceptualization process (blue solid line), ii)
how an object category can be described and covered by a series of concept templates (black solid
line), and iii) how concept templates are organized by geometry components (black dashed line).
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Semantic Segmentation

Figure 1: Annotation visualization Part I: Semantic Segmentation.
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Affordance

Part Pose

Figure 2: Annotation visualization Part II: Part Pose and Affordance (Push - Row.1-3, Pull - Row.4-5).
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(i)

(ii)

(iii)

(iv)

(v)

v1 v2 v3

SUS 80.8776.2162.56

Figure 3: [Top] Page-wise (i-v) illustrations of our platform’s evolvement over two rounds of
improvements. Key differences between versions are highlighted using boxes of the same color.
[Bottom] The average SUS scores of the three versions.

Notation Full name Notation Full name Notation Full name
Bot Bottle Box Box Bkt Bucket
Chr Chair Clp Clip Dsw DishWasher
Dsp Dispenser Dpl Display Dor Door
Drh DoorHandle Egl Eyeglasses Fct Faucet
Fdr FoldingRack Glb Globe Gsk GlueStick
Ket Kettle Ktp KitchenPot Knf Knife
Ltp Laptop Lgt Lighter Mcw Microwave

Mug Mug Ovn Oven Pen Pen
Plr Pliers Rfg Refrigerator Rlr Ruler
Saf Safe Scs Scissors Smp Shampoo
Shv Shaver Stp Stapler Stf StorageFurniture
Swt Switch Tab Table Tcn Trashcan
USB USB Wsm WashingMachine Win Window

Table 14: Cross reference table of notations in Tab. 1 of the main paper.
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Chair

ArmsetSeat

Back

Leg

C-shaped 
office leg

barstool 
leg

regular leg 
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Drawer
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cylindrical 
desktop

L-type desktop

regular 
sublayer

cylindrical 
sublayer

Backboard

regular 
backboard

regular 
drawer regular 

door
regular 
cabinet

Figure 4: Visualizations for Chair and Table about i) how they are divided into a group of parts
according to their structural for better guidance in the conceptualization process (blue solid line), ii)
how they can be described and covered by a series of concept templates (black solid line), and iii)
how concept templates are organized by geometry components (black dashed line).
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Door
regular door

double-layer
 door

concave door

T-shaped connecter

Handle

trifold handle
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DialLegController

regular controller

cuboidal leg

Figure 5: Visualizations for Microwave, WashingMachine and Safe about i) how they are divided
into a group of parts according to their structural for better guidance in the conceptualization process
(blue solid line), ii) how they can be described and covered by a series of concept templates (black
solid line), and iii) how concept templates are organized by geometry components (black dashed
line).
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Body
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Tray
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Door

door with 
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curved handle

flat tray regular door

double-layer 
body

cuboidal 
topcover
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drawer-like tray

single 
cuboidal leg

multilevel leg

Dishwasher

Figure 6: Visualizations for Bucket, KitchenPot and DishWasher about i) how they are divided into
a group of parts according to their structural for better guidance in the conceptualization process (blue
solid line), ii) how they can be described and covered by a series of concept templates (black solid
line), and iii) how concept templates are organized by geometry components (black dashed line).
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simplified wheel
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Cover

Wick
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 wick
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cambered nozzle
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Sphere

Base
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table-like base

enclosed 
bracket

KnifeHandle

Blade

cuboidal 
handle

T-shaped 
handle

cylindrical 
handle

curved handle

cuboidal 
blade cusp blade

curved blade

Guard

regular guard

Button

regular
 button

enveloping 
handle

multideck 
handle

Figure 7: Visualizations for Lighter, Globe and Knife about i) how they are divided into a group
of parts according to their structural for better guidance in the conceptualization process (blue solid
line), ii) how they can be described and covered by a series of concept templates (black solid line),
and iii) how concept templates are organized by geometry components (black dashed line).
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Body

Leg

cuboidal body

Tray

door with 
cuboidal handle

Door

door with 
trifold handle

door with 
trifold curve 

handle

door with 
curved handle

regular door

layered body

drawer-like tray

multilevel leg

Oven

flat tray

Baffle

cuboidal baffle

Top

flat top
top with burner

front controller

overhead 
controller Controller

Shaft

Scissors Handle

Blade

cuboidal 
shaftdouble cuboidal 

shaft

cylindrical shaft

cusp blade

curved blade

ring handle

half ring handle

double curved handle

triple curved handle

cuboidal ring handle

cuboidal 
handle

Body

Cover

prismatic body

cylindrical body

Shell

cuboidal shell

cylindrical shell

Trashcan

separated 
cylindrical body

Wheel

cylindrical cover

cuboidal cover double-layer
 cuboidal cover

holed cylindrical cover

regular
 wheel

cylindrical
 hollow cover

cuboidal
 hollow cover

holed 
cuboidal cover

Figure 8: Visualizations for Oven, Scissors and Trashcan about i) how they are divided into a group
of parts according to their structural for better guidance in the conceptualization process (blue solid
line), ii) how they can be described and covered by a series of concept templates (black solid line),
and iii) how concept templates are organized by geometry components (black dashed line).
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Barrel

double-layer 
barrel

Button

cylindrical barrel

cylindrical button
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Topclip

trifold topclip
curved topclip

Cap

cap with 
trifold clip

cap with 
curved clip
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Refill

cylindrical
 refill

Kettle

Body

Handle

Spout

Cover

semi-spherical 
body

spherical-cylindrical 
body

multilevel body

ring handle
trifold handle

curved spout

cylindrical cover

curved handle

cylindrical handle

Tophandle

curved tophandle

round U-tophandle

flat U-tophandlestraight spout

trifold tophandle

Shaft

Handle

round shaft

Baffle

rectangular 
baffle

rectangular 
shaft

straight handle

Gripper

curved baffle

curved gripper

cusp gripper

Pliers

middle-curved 
handle

rear-curved handle

Figure 9: Visualizations for Pen, Kettle and Pliers about i) how they are divided into a group of
parts according to their structural for better guidance in the conceptualization process (blue solid
line), ii) how they can be described and covered by a series of concept templates (black solid line),
and iii) how concept templates are organized by geometry components (black dashed line).
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cuboidal body

Tray

door with 
cuboidal handle

Door

door with 
trifold handle

door with 
trifold curve handle

door with 
curved handle

flat tray
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double-layer 
body

regular 
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drawer-like tray

cuboidal leg
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Stapler
Body Magazine

Cover

regular
body

curved
magazine

simplified
magazine

carved
 cover

simplified
 cover

complex
magazine

SwitchBase
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Plug

Knob

round knob

round 
switch

lever 
switch

2-layer base

regular base

3-phase 
plugflat 

plug

T-shaped 
base

vertical
plug

flip 
switch

Figure 10: Visualizations for Refrigerator, Stapler and Switch about i) how they are divided into a
group of parts according to their structural for better guidance in the conceptualization process (blue
solid line), ii) how they can be described and covered by a series of concept templates (black solid
line), and iii) how concept templates are organized by geometry components (black dashed line).
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Door Handle
cylindrical

handle
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handle
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handle
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Doorframe
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regular
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regular
doorframe

regular
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Display

cuboidal support

trifold support

T-shaped 
support

Support

Base

Screen

2-layer screen

frustum-shaped
screen

cuboidal base

V-shaped 
base roundbase

T-shaped 
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Figure 11: Visualizations for Door and Display about i) how they are divided into a group of parts
according to their structural for better guidance in the conceptualization process (blue solid line), ii)
how they can be described and covered by a series of concept templates (black solid line), and iii)
how concept templates are organized by geometry components (black dashed line).
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Box

Body

Cover

cuboidal body

fourfold cover

regular cover

Leg

cuboidal leg
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Connector

Body

Cap

simplied 
connector

regular
body

round-ended
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regular
cap
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connector

square-ended 
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round-ended 
flip cap

Window

Handle
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Windowframesymmetrical 
window

asymmetrical 
window

vertical-slid 
window

regular 
windowframe

cuboidal 
handle

L-shaped 
handle

arched  
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Figure 12: Visualizations for Box, USB and Window about i) how they are divided into a group of
parts according to their structural for better guidance in the conceptualization process (blue solid
line), ii) how they can be described and covered by a series of concept templates (black solid line),
and iii) how concept templates are organized by geometry components (black dashed line).
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regular 
support

round 
frame

trifold
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regular
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switch
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dial
switch

quadfold 
spout
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curved
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shower 
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rectangular
 spout

L-shaped 
switch

rotary 
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cuboidal
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cuboidal
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Figure 13: Visualizations for Eyeglasses and Faucet about i) how they are divided into a group of
parts according to their structural for better guidance in the conceptualization process (blue solid
line), ii) how they can be described and covered by a series of concept templates (black solid line),
and iii) how concept templates are organized by geometry components (black dashed line).

20



Mug

Body

Handle

Coaster

Cover

cylindrical
 body

prismatic 
body

multilevel body

trifold 
handle
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 cover
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regular drawer
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DispenserBody Nozzle

multilevel body
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cuboidal 
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Figure 14: Visualizations for StorageFurniture, Dispenser and Mug about i) how they are divided
into a group of parts according to their structural for better guidance in the conceptualization process
(blue solid line), ii) how they can be described and covered by a series of concept templates (black
solid line), and iii) how concept templates are organized by geometry components (black dashed
line).
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screen
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cap
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cylindrical
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Figure 15: Visualizations for Laptop, Shampoo and Bottle about i) how they are divided into a
group of parts according to their structural for better guidance in the conceptualization process (blue
solid line), ii) how they can be described and covered by a series of concept templates (black solid
line), and iii) how concept templates are organized by geometry components (black dashed line).
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Figure 16: Visualizations for Clip, Doorhandle, Foldingrack, Gluestick, Ruler and Shaver about
i) how they are divided into a group of parts according to their structural for better guidance in the
conceptualization process (blue solid line), ii) how they can be described and covered by a series
of concept templates (black solid line), and iii) how concept templates are organized by geometry
components (black dashed line).
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